To any infinite word w over a finite alphabet A we can associate two infinite words min(w) and max(w) such that any prefix of min(w) (resp. max(w)) is the lexicographically smallest (resp. greatest) amongst the factors of w of the same length. We say that an infinite word w over A is "fine" if there exists an infinite word u such that, for any lexicographic order, min(w) = au where a = min(A). In this paper, we characterize fine words; specifically, we prove that an infinite word w is fine if and only if w is either a "strict episturmian word" or a strict "skew episturmian word''. This characterization generalizes a recent result of G. Pirillo, who proved that a fine word over a 2-letter alphabet is either an (aperiodic) Sturmian word, or an ultimately periodic (but not periodic) infinite word, all of whose factors are (finite) Sturmian.

Thanks. We have received your report. If we find this content to be in
violation of our guidelines,
we will remove it.

Ok