Successful wavelet estimation is an essential step for seismic methods like impedance inversion, analysis of amplitude variations with offset and full waveform inversion. Homomorphic deconvolution has long intrigued as a potentially elegant solution to the wavelet estimation problem. Yet a successful implementation has proven difficult. Associated disadvantages like phase unwrapping and restrictions of sparsity in the reflectivity function limit its application. We explore short-time homomorphic wavelet estimation as a combination of the classical homomorphic analysis and log-spectral averaging. The introduced method of log-spectral averaging using a short-term Fourier transform increases the number of sample points, thus reducing estimation variances. We apply the developed method on synthetic and real data examples and demonstrate good performance.