Dopamine: Differentially Private Federated Learning on Medical Data

Mohammad Malekzadeh, Burak Hasircioglu, Nitish Mital, Kunal Katarya, Mehmet Emre Ozfatura, Deniz Gündüz

While rich medical datasets are hosted in hospitals distributed across the world, concerns on patients' privacy is a barrier against using such data to train deep neural networks (DNNs) for medical diagnostics. We propose Dopamine, a system to train DNNs on distributed datasets, which employs federated learning (FL) with differentially-private stochastic gradient descent (DPSGD), and, in combination with secure aggregation, can establish a better trade-off between differential privacy (DP) guarantee and DNN's accuracy than other approaches. Results on a diabetic retinopathy~(DR) task show that Dopamine provides a DP guarantee close to the centralized training counterpart, while achieving a better classification accuracy than FL with parallel DP where DPSGD is applied without coordination. Code is available at https://github.com/ipc-lab/private-ml-for-health.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment