Vahideh Manshadi, Rad Niazadeh, Scott Rodilitz

We study the allocative challenges that governmental and nonprofit organizations face when tasked with equitable and efficient rationing of a social good among agents whose needs (demands) realize sequentially and are possibly correlated. To better achieve their dual aims of equity and efficiency in such contexts, social planners intend to maximize the minimum fill rate across agents, where each agent's fill rate must be irrevocably decided upon its arrival. For an arbitrarily correlated sequence of demands, we establish upper bounds on both the expected minimum fill rate (ex-post fairness) and the minimum expected fill rate (ex-ante fairness) achievable by any policy. Our bounds are parameterized by the number of agents and the expected demand-to-supply ratio, and they shed light on the limits of attaining equity in dynamic rationing. Further, we show that for any set of parameters, a simple adaptive policy of projected proportional allocation achieves the best possible fairness guarantee, ex post as well as ex ante. Our policy is transparent and easy to implement; yet despite its simplicity, we demonstrate that this policy provides significant improvement over the class of non-adaptive target-fill-rate policies. We obtain the performance guarantees of (i) our proposed adaptive policy by inductively designing lower-bound functions on its corresponding value-to-go, and (ii) the optimal target-fill-rate policy by establishing an intriguing connection to a monopoly-pricing optimization problem. We complement our theoretical developments with a numerical study motivated by the rationing of COVID-19 medical supplies based on a projected-demand model used by the White House. In such a setting, our simple adaptive policy significantly outperforms its theoretical guarantee as well as the optimal target-fill-rate policy.

Knowledge Graph



Sign up or login to leave a comment