Neural Architecture Search For LF-MMI Trained Time Delay Neural Networks

Shoukang Hu, Xurong Xie, Shansong Liu, Mingyu Cui, Mengzhe Geng, Xunying Liu, Helen Meng

Deep neural networks (DNNs) based automatic speech recognition (ASR) systems are often designed using expert knowledge and empirical evaluation. In this paper, a range of neural architecture search (NAS) techniques are used to automatically learn two types of hyper-parameters of state-of-the-art factored time delay neural networks (TDNNs): i) the left and right splicing context offsets; and ii) the dimensionality of the bottleneck linear projection at each hidden layer. These include the DARTS method integrating architecture selection with lattice-free MMI (LF-MMI) TDNN training; Gumbel-Softmax and pipelined DARTS reducing the confusion over candidate architectures and improving the generalization of architecture selection; and Penalized DARTS incorporating resource constraints to adjust the trade-off between performance and system complexity. Parameter sharing among candidate architectures allows efficient search over up to $7^{28}$ different TDNN systems. Experiments conducted on the 300-hour Switchboard corpus suggest the auto-configured systems consistently outperform the baseline LF-MMI TDNN systems using manual network design or random architecture search after LHUC speaker adaptation and RNNLM rescoring. Absolute word error rate (WER) reductions up to 1.0\% and relative model size reduction of 28\% were obtained. Consistent performance improvements were also obtained on a UASpeech disordered speech recognition task using the proposed NAS approaches.

Knowledge Graph



Sign up or login to leave a comment