Depth separation beyond radial functions

Luca Venturi, Samy Jelassi, Tristan Ozuch, Joan Bruna

High-dimensional depth separation results for neural networks show that certain functions can be efficiently approximated by two-hidden-layer networks but not by one-hidden-layer ones in high-dimensions $d$. Existing results of this type mainly focus on functions with an underlying radial or one-dimensional structure, which are usually not encountered in practice. The first contribution of this paper is to extend such results to a more general class of functions, namely functions with piece-wise oscillatory structure, by building on the proof strategy of (Eldan and Shamir, 2016). A common theme in the proof of such results is the fact that one-hidden-layer fail to approximate high-energy functions whose Fourier representation is spread in the domain. On the other hand, existing approximation results of a function by one-hidden-layer neural networks rely on the function having a sparse Fourier representation. The choice of the domain also represents a source of gaps between upper and lower approximation bounds. Focusing on a fixed approximation domain, namely the sphere $\mathbb{S}^{d-1}$ in dimension $d$, we provide a characterization of both functions which are efficiently approximable by one-hidden-layer networks and of functions which are provably not, in terms of their Fourier expansion.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment