RoI Tanh-polar Transformer Network for Face Parsing in the Wild

Yiming Lin, Jie Shen, Yujiang Wang, Maja Pantic

Face parsing aims to predict pixel-wise labels for facial components of a target face in an image. Existing approaches usually crop the target face from the input image with respect to a bounding box calculated during pre-processing, and thus can only parse inner facial Regions of Interest (RoIs). Peripheral regions like hair are ignored and nearby faces that are partially included in the bounding box can cause distractions. Moreover, these methods are only trained and evaluated on near-frontal portrait images and thus their performance for in-the-wild cases were unexplored. To address these issues, this paper makes three contributions. First, we introduce iBugMask dataset for face parsing in the wild containing 1,000 manually annotated images with large variations in sizes, poses, expressions and background, and Helen-LP, a large-pose training set containing 21,866 images generated using head pose augmentation. Second, we propose RoI Tanh-polar transform that warps the whole image to a Tanh-polar representation with a fixed ratio between the face area and the context, guided by the target bounding box. The new representation contains all information in the original image, and allows for rotation equivariance in the convolutional neural networks (CNNs). Third, we propose a hybrid residual representation learning block, coined HybridBlock, that contains convolutional layers in both the Tanh-polar space and the Tanh-Cartesian space, allowing for receptive fields of different shapes in CNNs. Through extensive experiments, we show that the proposed method significantly improves the state-of-the-art for face parsing in the wild.

Knowledge Graph



Sign up or login to leave a comment