Matroidal structure of generalized rough sets based on symmetric and transitive relations

Bin Yang, William Zhu

Rough sets are efficient for data pre-process in data mining. Lower and upper approximations are two core concepts of rough sets. This paper studies generalized rough sets based on symmetric and transitive relations from the operator-oriented view by matroidal approaches. We firstly construct a matroidal structure of generalized rough sets based on symmetric and transitive relations, and provide an approach to study the matroid induced by a symmetric and transitive relation. Secondly, this paper establishes a close relationship between matroids and generalized rough sets. Approximation quality and roughness of generalized rough sets can be computed by the circuit of matroid theory. At last, a symmetric and transitive relation can be constructed by a matroid with some special properties.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment