Fisher Information and Mutual Information Constraints

Leighton Pate Barnes, Ayfer Ozgur

We consider the processing of statistical samples $X\sim P_\theta$ by a channel $p(y|x)$, and characterize how the statistical information from the samples for estimating the parameter $\theta\in\mathbb{R}^d$ can scale with the mutual information or capacity of the channel. We show that if the statistical model has a sub-Gaussian score function, then the trace of the Fisher information matrix for estimating $\theta$ from $Y$ can scale at most linearly with the mutual information between $X$ and $Y$. We apply this result to obtain minimax lower bounds in distributed statistical estimation problems, and obtain a tight preconstant for Gaussian mean estimation. We then show how our Fisher information bound can also imply mutual information or Jensen-Shannon divergence based distributed strong data processing inequalities.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment