Multiple-view clustering for identifying subject clusters and brain sub-networks using functional connectivity matrices without vectorization

Tomoki Tokuda, Okito Yamashita, Junichiro Yoshimoto

In neuroscience, the functional magnetic resonance imaging (fMRI) is a vital tool to non-invasively access brain activity. Using fMRI, the functional connectivity (FC) between brain regions can be inferred, which has contributed to a number of findings of the fundamental properties of the brain. As an important clinical application of FC, clustering of subjects based on FC recently draws much attention, which can potentially reveal important heterogeneity in subjects such as subtypes of psychiatric disorders. In particular, a multiple-view clustering method is a powerful analytical tool, which identifies clustering patterns of subjects depending on their FC in specific brain areas. However, when one applies an existing multiple-view clustering method to fMRI data, there is a need to simplify the data structure, independently dealing with elements in a FC matrix, i.e., vectorizing a correlation matrix. Such a simplification may distort the clustering results. To overcome this problem, we propose a novel multiple-view clustering method based on Wishart mixture models, which preserves the correlation matrix structure without vectorization. The uniqueness of this method is that the multiple-view clustering of subjects is based on particular networks of nodes (or regions of interest, ROIs), optimized in a data-driven manner. Hence, it can identify multiple underlying pairs of associations between a subject cluster solution and a ROI sub-network. The key assumption of the method is independence among sub-networks, which is effectively addressed by whitening correlation matrices. We applied the proposed method to synthetic and fMRI data, demonstrating the usefulness and power of the proposed method.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment