Q-learning, which seeks to learn the optimal Q-function of a Markov decision process (MDP) in a model-free fashion, lies at the heart of reinforcement learning. When it comes to the synchronous setting (such that independent samples for all state-action pairs are drawn from a generative model in each iteration), substantial progress has been made recently towards understanding the sample efficiency of Q-learning. To yield an entrywise $\varepsilon$-accurate estimate of the optimal Q-function, state-of-the-art theory requires at least an order of $\frac{|\mathcal{S}||\mathcal{A}|}{(1-\gamma)^5\varepsilon^{2}}$ samples for a $\gamma$-discounted infinite-horizon MDP with state space $\mathcal{S}$ and action space $\mathcal{A}$. In this work, we sharpen the sample complexity of synchronous Q-learning to an order of $\frac{|\mathcal{S}||\mathcal{A}|}{(1-\gamma)^4\varepsilon^2}$ (up to some logarithmic factor) for any $0<\varepsilon <1$, leading to an order-wise improvement in terms of the effective horizon $\frac{1}{1-\gamma}$. Analogous results are derived for finite-horizon MDPs as well. Our finding unveils the effectiveness of vanilla Q-learning, which matches that of speedy Q-learning without requiring extra computation and storage. A key ingredient of our analysis lies in the establishment of novel error decompositions and recursions, which might shed light on how to analyze finite-sample performance of other Q-learning variants.

Thanks. We have received your report. If we find this content to be in
violation of our guidelines,
we will remove it.

Ok