We present an iterative approach to constructing pseudorandom generators, based on the repeated application of mild pseudorandom restrictions. We use this template to construct pseudorandom generators for combinatorial rectangles and read-once CNFs and a hitting set generator for width-3 branching programs, all of which achieve near-optimal seed-length even in the low-error regime: We get seed-length O(log (n/epsilon)) for error epsilon. Previously, only constructions with seed-length O(\log^{3/2} n) or O(\log^2 n) were known for these classes with polynomially small error. The (pseudo)random restrictions we use are milder than those typically used for proving circuit lower bounds in that we only set a constant fraction of the bits at a time. While such restrictions do not simplify the functions drastically, we show that they can be derandomized using small-bias spaces.