An optimized conflict-free replicated set

Annette Bieniusa, Marek Zawirski, Nuno Preguiça, Marc Shapiro, Carlos Baquero, Valter Balegas, Sérgio Duarte

Eventual consistency of replicated data supports concurrent updates, reduces latency and improves fault tolerance, but forgoes strong consistency. Accordingly, several cloud computing platforms implement eventually-consistent data types. The set is a widespread and useful abstraction, and many replicated set designs have been proposed. We present a reasoning abstraction, permutation equivalence, that systematizes the characterization of the expected concurrency semantics of concurrent types. Under this framework we present one of the existing conflict-free replicated data types, Observed-Remove Set. Furthermore, in order to decrease the size of meta-data, we propose a new optimization to avoid tombstones. This approach that can be transposed to other data types, such as maps, graphs or sequences.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment