Robust Black-box Watermarking for Deep NeuralNetwork using Inverse Document Frequency

Mohammad Mehdi Yadollahi, Farzaneh Shoeleh, Sajjad Dadkhah, Ali A. Ghorbani

Deep learning techniques are one of the most significant elements of any Artificial Intelligence (AI) services. Recently, these Machine Learning (ML) methods, such as Deep Neural Networks (DNNs), presented exceptional achievement in implementing human-level capabilities for various predicaments, such as Natural Processing Language (NLP), voice recognition, and image processing, etc. Training these models are expensive in terms of computational power and the existence of enough labelled data. Thus, ML-based models such as DNNs establish genuine business value and intellectual property (IP) for their owners. Therefore the trained models need to be protected from any adversary attacks such as illegal redistribution, reproducing, and derivation. Watermarking can be considered as an effective technique for securing a DNN model. However, so far, most of the watermarking algorithm focuses on watermarking the DNN by adding noise to an image. To this end, we propose a framework for watermarking a DNN model designed for a textual domain. The watermark generation scheme provides a secure watermarking method by combining Term Frequency (TF) and Inverse Document Frequency (IDF) of a particular word. The proposed embedding procedure takes place in the model's training time, making the watermark verification stage straightforward by sending the watermarked document to the trained model. The experimental results show that watermarked models have the same accuracy as the original ones. The proposed framework accurately verifies the ownership of all surrogate models without impairing the performance. The proposed algorithm is robust against well-known attacks such as parameter pruning and brute force attack.

Knowledge Graph



Sign up or login to leave a comment