Structure Assisted NMF Methods for Separation of Degenerate Mixture Data with Application to NMR Spectroscopy

Yuanchang Sun, Kai Huang, Jack Xin

In this paper, we develop structure assisted nonnegative matrix factorization (NMF) methods for blind source separation of degenerate data. The motivation originates from nuclear magnetic resonance (NMR) spectroscopy, where a multiple mixture NMR spectra are recorded to identify chemical compounds with similar structures. Consider the linear mixing model (LMM), we aim to identify the chemical compounds involved when the mixing process is known to be nearly singular. We first consider a class of data with dominant interval(s) (DI) where each of source signals has dominant peaks over others. Besides, a nearly singular mixing process produces degenerate mixtures. The DI condition implies clustering structures in the data points. Hence, the estimation of the mixing matrix could be achieved by data clustering. Due to the presence of the noise and the degeneracy of the data, a small deviation in the estimation may introduce errors in the output. To resolve this problem and improve robustness of the separation, methods are developed in two aspects. One is to find better estimation of the mixing matrix by allowing a constrained perturbation to the clustering output, and it can be achieved by a quadratic programming. The other is to seek sparse source signals by exploiting the DI condition, and it solves an $\ell_1$ optimization. If no source information is available, we propose to adopt the nonnegative matrix factorization approach by incorporating the matrix structure (parallel columns of the mixing matrix) into the cost function and develop multiplicative iteration rules for the numerical solutions. We present experimental results of NMR data to show the performance and reliability of the method in the applications arising in NMR spectroscopy.

Knowledge Graph



Sign up or login to leave a comment