A registration error estimation framework for correlative imaging

Guillaume Potier, Frédéric Lavancier, Stephan Kunne, Perrine Paul-Gilloteaux

Correlative imaging workflows are now widely used in bioimaging and aims to image the same sample using at least two different and complementary imaging modalities. Part of the workflow relies on finding the transformation linking a source image to a target image. We are specifically interested in the estimation of registration error in point-based registration. We propose an application of multivariate linear regression to solve the registration problem allowing us to propose a framework for the estimation of the associated error in the case of rigid and affine transformations and with anisotropic noise. These developments can be used as a decision-support tool for the biologist to analyze multimodal correlative images and are available under Ec-CLEM, an open-source plugin under ICY.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment