Structural Connectome Atlas Construction in the Space of Riemannian Metrics

Kristen M. Campbell, Haocheng Dai, Zhe Su, Martin Bauer, P. Thomas Fletcher, Sarang C. Joshi

The structural connectome is often represented by fiber bundles generated from various types of tractography. We propose a method of analyzing connectomes by representing them as a Riemannian metric, thereby viewing them as points in an infinite-dimensional manifold. After equipping this space with a natural metric structure, the Ebin metric, we apply object-oriented statistical analysis to define an atlas as the Fr\'echet mean of a population of Riemannian metrics. We demonstrate connectome registration and atlas formation using connectomes derived from diffusion tensors estimated from a subset of subjects from the Human Connectome Project.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment