LightMBERT: A Simple Yet Effective Method for Multilingual BERT Distillation

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao Chen, Linlin Li, Fang Wang, Qun Liu

The multilingual pre-trained language models (e.g, mBERT, XLM and XLM-R) have shown impressive performance on cross-lingual natural language understanding tasks. However, these models are computationally intensive and difficult to be deployed on resource-restricted devices. In this paper, we propose a simple yet effective distillation method (LightMBERT) for transferring the cross-lingual generalization ability of the multilingual BERT to a small student model. The experiment results empirically demonstrate the efficiency and effectiveness of LightMBERT, which is significantly better than the baselines and performs comparable to the teacher mBERT.

Knowledge Graph



Sign up or login to leave a comment