Modeling Heterogeneous Edges to Represent Networks with Graph Auto-Encoder

Lu Wang, Yu Song, Hong Huang, Fanghua Ye, Xuanhua Shi, Hai Jin

In the real world, networks often contain multiple relationships among nodes, manifested as the heterogeneity of the edges in the networks. We convert the heterogeneous networks into multiple views by using each view to describe a specific type of relationship between nodes, so that we can leverage the collaboration of multiple views to learn the representation of networks with heterogeneous edges. Given this, we propose a \emph{regularized graph auto-encoders} (RGAE) model, committed to utilizing abundant information in multiple views to learn robust network representations. More specifically, RGAE designs shared and private graph auto-encoders as main components to capture high-order nonlinear structure information of the networks. Besides, two loss functions serve as regularization to extract consistent and unique information, respectively. Concrete experimental results on realistic datasets indicate that our model outperforms state-of-the-art baselines in practical applications.

Knowledge Graph



Sign up or login to leave a comment