A Risk-taking Broker Model to Optimise User Requests placement on On-demand and Contract VMs

Chalee Boonprasop, Yuhui Lin, Adam Barker

Cloud providers offer end-users various pricing schemes to allow them to tailor VMs to their needs, e.g., a pay-as-you-go billing scheme, called \textit{on-demand}, and a discounted contract scheme, called \textit{reserved instances}. This paper presents a cloud broker which offers users both the flexibility of on-demand instances and some level of discounts found in reserved instances. The broker employs a buy-low-and-sell-high strategy that places user requests into a resource pool of pre-purchased discounted cloud resources. By analysing user request time-series data, the broker takes a risk-oriented approach to dynamically adjust the resource pool. This approach does not require a training process which is useful at processing the large data stream. The broker is evaluated with high-frequency real cloud datasets from Alibaba. The results show that the overall profit of the broker is close to the theoretical optimal scenario where user requests can be perfectly predicted.

Knowledge Graph



Sign up or login to leave a comment