In this paper we derive a new recovery procedure for the reconstruction of extended exponential sums of the form $y(t) = \sum_{j=1}^{M} \left( \sum_{m=0}^{n_j} \, \gamma_{j,m} \, t^{m} \right) {\mathrm e}^{2\pi \lambda_j t}$, where the frequency parameters $\lambda_{j} \in {\mathbb C}$ are pairwise distinct. For the reconstruction we employ a finite set of classical Fourier coefficients of $y$ with regard to a finite interval $[0,P] \subset {\mathbb R}$ with $P>0$. Our method requires at most $2N+2$ Fourier coefficients $c_{k}(y)$ to recover all parameters of $y$, where $N:=\sum_{j=1}^{M} (1+n_{j})$ denotes the order of $y$. The recovery is based on the observation that for $\lambda_{j} \not\in \frac{{\mathrm i}}{P} {\mathbb Z}$ the terms of $y$ possess Fourier coefficients with rational structure. We employ a recently proposed stable iterative rational approximation algorithm in [12]. If a sufficiently large set of $L$ Fourier coefficients of $y$ is available (i.e., $L > 2N+2$), then our recovery method automatically detects the number $M$ of terms of $y$, the multiplicities $n_{j}$ for $j=1, \ldots , M$, as well as all parameters $\lambda_{j}$, $j=1, \ldots , M$ and $ \gamma_{j,m}$ $j=1, \ldots , M$, $m=0, \ldots , n_{j}$, determining $y$. Therefore our method provides a new stable alternative to the known numerical approaches for the recovery of exponential sums that are based on Prony's method.

Thanks. We have received your report. If we find this content to be in
violation of our guidelines,
we will remove it.

Ok