Given a reversible Markov chain $P_n$ on $n$ states, and another chain $\tilde{P}_n$ obtained by perturbing each row of $P_n$ by at most $\alpha_n$ in total variation, we study the total variation distance between the two stationary distributions, $\| \pi_n - \tilde{\pi}_n \|$. We show that for chains with cutoff, $\| \pi_n - \tilde{\pi}_n \|$ converges to $0$, $e^{-c}$, and $1$, respectively, if the product of $\alpha_n$ and the mixing time of $P_n$ converges to $0$, $c$, and $\infty$, respectively. This echoes recent results for specific random walks that exhibit cutoff, suggesting that cutoff is the key property underlying such results. Moreover, we show $\| \pi_n - \tilde{\pi}_n \|$ is maximized by restart perturbations, for which $\tilde{P}_n$ "restarts" $P_n$ at a random state with probability $\alpha_n$ at each step. Finally, we show that pre-cutoff is (almost) equivalent to a notion of "sensitivity to restart perturbations," suggesting that chains with sharper convergence to stationarity are inherently less robust.

Thanks. We have received your report. If we find this content to be in
violation of our guidelines,
we will remove it.

Ok