EnHMM: On the Use of Ensemble HMMs and Stack Traces to Predict the Reassignment of Bug Report Fields

Md Shariful Islam, Abdelwahab Hamou-Lhadj, Korosh K. Sabor, Mohammad Hamdaqa, Haipeng Cai

Bug reports (BR) contain vital information that can help triaging teams prioritize and assign bugs to developers who will provide the fixes. However, studies have shown that BR fields often contain incorrect information that need to be reassigned, which delays the bug fixing process. There exist approaches for predicting whether a BR field should be reassigned or not. These studies use mainly BR descriptions and traditional machine learning algorithms (SVM, KNN, etc.). As such, they do not fully benefit from the sequential order of information in BR data, such as function call sequences in BR stack traces, which may be valuable for improving the prediction accuracy. In this paper, we propose a novel approach, called EnHMM, for predicting the reassignment of BR fields using ensemble Hidden Markov Models (HMMs), trained on stack traces. EnHMM leverages the natural ability of HMMs to represent sequential data to model the temporal order of function calls in BR stack traces. When applied to Eclipse and Gnome BR repositories, EnHMM achieves an average precision, recall, and F-measure of 54%, 76%, and 60% on Eclipse dataset and 41%, 69%, and 51% on Gnome dataset. We also found that EnHMM improves over the best single HMM by 36% for Eclipse and 76% for Gnome. Finally, when comparing EnHMM to Im.ML.KNN, a recent approach in the field, we found that the average F-measure score of EnHMM improves the average F-measure of Im.ML.KNN by 6.80% and improves the average recall of Im.ML.KNN by 36.09%. However, the average precision of EnHMM is lower than that of Im.ML.KNN (53.93% as opposed to 56.71%).

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment