On the list decodability of rank-metric codes containing Gabidulin codes

Paolo Santonastaso, Ferdinando Zullo

Wachter-Zeh in [42], and later together with Raviv [31], proved that Gabidulin codes cannot be efficiently list decoded for any radius $\tau$, providing that $\tau$ is large enough. Also, they proved that there are infinitely many choices of the parameters for which Gabidulin codes cannot be efficiently list decoded at all. Subsequently, in [41] these results have been extended to the family of generalized Gabidulin codes and to further family of MRD-codes. In this paper, we provide bounds on the list size of rank-metric codes containing generalized Gabidulin codes in order to determine whether or not a polynomial-time list decoding algorithm exists. We detect several families of rank-metric codes containing a generalized Gabidulin code as subcode which cannot be efficiently list decoded for any radius large enough and families of rank-metric codes which cannot be efficiently list decoded. These results suggest that rank-metric codes which are $\mathbb{F}_{q^m}$-linear or that contains a (power of) generalized Gabidulin code cannot be efficiently list decoded for large values of the radius.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment