Herein, we present a detailed analysis of an eigenvalue based sensing technique in the presence of correlated noise in the context of a Cognitive Radio (CR). We use a Standard Condition Number (SCN) based decision statistic based on asymptotic Random Matrix Theory (RMT) for decision process. Firstly, the effect of noise correlation on eigenvalue based Spectrum Sensing (SS) is studied analytically under both the noise only and the signal plus noise hypotheses. Secondly, new bounds for the SCN are proposed for achieving improved sensing in correlated noise scenarios. Thirdly, the performance of Fractional Sampling (FS) based SS is studied and a method for determining the operating point for the FS rate in terms of sensing performance and complexity is suggested. Finally, an SNR estimation technique based on the maximum eigenvalue of the received signal's covariance matrix is proposed. It is shown that proposed SCN-based threshold improves sensing performance in the presence of correlated noise and SNRs upto 0 dB can be reliably estimated without the knowledge of noise variance.