PeaceGAN: A GAN-based Multi-Task Learning Method for SAR Target Image Generation with a Pose Estimator and an Auxiliary Classifier

Jihyong Oh, Munchurl Kim

Although Generative Adversarial Networks (GANs) are successfully applied to diverse fields, training GANs on synthetic aperture radar (SAR) data is a challenging task mostly due to speckle noise. On the one hands, in a learning perspective of human's perception, it is natural to learn a task by using various information from multiple sources. However, in the previous GAN works on SAR target image generation, the information on target classes has only been used. Due to the backscattering characteristics of SAR image signals, the shapes and structures of SAR target images are strongly dependent on their pose angles. Nevertheless, the pose angle information has not been incorporated into such generative models for SAR target images. In this paper, we firstly propose a novel GAN-based multi-task learning (MTL) method for SAR target image generation, called PeaceGAN that uses both pose angle and target class information, which makes it possible to produce SAR target images of desired target classes at intended pose angles. For this, the PeaceGAN has two additional structures, a pose estimator and an auxiliary classifier, at the side of its discriminator to combine the pose and class information more efficiently. In addition, the PeaceGAN is jointly learned in an end-to-end manner as MTL with both pose angle and target class information, thus enhancing the diversity and quality of generated SAR target images The extensive experiments show that taking an advantage of both pose angle and target class learning by the proposed pose estimator and auxiliary classifier can help the PeaceGAN's generator effectively learn the distributions of SAR target images in the MTL framework, so that it can better generate the SAR target images more flexibly and faithfully at intended pose angles for desired target classes compared to the recent state-of-the-art methods.

Knowledge Graph



Sign up or login to leave a comment