On the Arbitrary-Oriented Object Detection: Classification based Approaches Revisited

Xue Yang, Junchi Yan, Tao He

Arbitrary-oriented object detection has been a building block for rotation sensitive tasks. We first show that the problem of discontinuous boundaries suffered in existing dominant regression-based rotation detectors, is caused by angular periodicity or corner ordering, according to the parameterization protocol. We also show that the root cause is that the ideal predictions can be out of the defined range. Accordingly, we transform the angular prediction task from a regression problem to a classification one. For the resulting circularly distributed angle classification problem, we first devise a Circular Smooth Label (CSL) technique to handle the periodicity of angle and increase the error tolerance to adjacent angles. To reduce the excessive model parameters by CSL, we further design a Gray Coded Label (GCL), which greatly reduces the length of the encoding. Finally, we further develop an object heading detection module, which can be useful when the exact heading orientation information is needed e.g. for ship and plane heading detection. We release our OHD-SJTU dataset and OHDet detector for heading detection. Results on three large-scale public datasets for aerial images i.e. DOTA, HRSC2016, OHD-SJTU, as well as scene text dataset ICDAR2015 and MLT, show the effectiveness of our approach.

Knowledge Graph



Sign up or login to leave a comment