Contextual Text Embeddings for Twi

Paul Azunre, Salomey Osei, Salomey Addo, Lawrence Asamoah Adu-Gyamfi, Stephen Moore, Bernard Adabankah, Bernard Opoku, Clara Asare-Nyarko, Samuel Nyarko, Cynthia Amoaba, Esther Dansoa Appiah, Felix Akwerh, Richard Nii Lante Lawson, Joel Budu, Emmanuel Debrah, Nana Boateng, Wisdom Ofori, Edwin Buabeng-Munkoh, Franklin Adjei, Isaac Kojo Essel Ampomah, Joseph Otoo, Reindorf Borkor, Standylove Birago Mensah, Lucien Mensah, Mark Amoako Marcel, Anokye Acheampong Amponsah, James Ben Hayfron-Acquah

Transformer-based language models have been changing the modern Natural Language Processing (NLP) landscape for high-resource languages such as English, Chinese, Russian, etc. However, this technology does not yet exist for any Ghanaian language. In this paper, we introduce the first of such models for Twi or Akan, the most widely spoken Ghanaian language. The specific contribution of this research work is the development of several pretrained transformer language models for the Akuapem and Asante dialects of Twi, paving the way for advances in application areas such as Named Entity Recognition (NER), Neural Machine Translation (NMT), Sentiment Analysis (SA) and Part-of-Speech (POS) tagging. Specifically, we introduce four different flavours of ABENA -- A BERT model Now in Akan that is fine-tuned on a set of Akan corpora, and BAKO - BERT with Akan Knowledge only, which is trained from scratch. We open-source the model through the Hugging Face model hub and demonstrate its use via a simple sentiment classification example.

Knowledge Graph



Sign up or login to leave a comment