6-DoF Contrastive Grasp Proposal Network

Xinghao Zhu, Lingfeng Sun, Yongxiang Fan, Masayoshi Tomizuka

Proposing grasp poses for novel objects is an essential component for any robot manipulation task. Planning six degrees of freedom (DoF) grasps with a single camera, however, is challenging due to the complex object shape, incomplete object information, and sensor noise. In this paper, we present a 6-DoF contrastive grasp proposal network (CGPN) to infer 6-DoF grasps from a single-view depth image. First, an image encoder is used to extract the feature map from the input depth image, after which 3-DoF grasp regions are proposed from the feature map with a rotated region proposal network. Feature vectors that within the proposed grasp regions are then extracted and refined to 6-DoF grasps. The proposed model is trained offline with synthetic grasp data. To improve the robustness in reality and bridge the simulation-to-real gap, we further introduce a contrastive learning module and variant image processing techniques during the training. CGPN can locate collision-free grasps of an object using a single-view depth image within 0.5 seconds. Experiments on a physical robot further demonstrate the effectiveness of the algorithm.

Knowledge Graph



Sign up or login to leave a comment