Exploring Plausible Patches Using Source Code Embeddings in JavaScript

Viktor Csuvik, Dániel Horváth, Márk Lajkó, László Vidács

Despite the immense popularity of the Automated Program Repair (APR) field, the question of patch validation is still open. Most of the present-day approaches follow the so-called Generate-and-Validate approach, where first a candidate solution is being generated and after validated against an oracle. The latter, however, might not give a reliable result, because of the imperfections in such oracles; one of which is usually the test suite. Although (re-) running the test suite is right under one's nose, in real life applications the problem of over- and underfitting often occurs, resulting in inadequate patches. Efforts that have been made to tackle with this problem include patch filtering, test suite expansion, careful patch producing and many more. Most approaches to date use post-filtering relying either on test execution traces or make use of some similarity concept measured on the generated patches. Our goal is to investigate the nature of these similarity-based approaches. To do so, we trained a Doc2Vec model on an open-source JavaScript project and generated 465 patches for 10 bugs in it. These plausible patches alongside with the developer fix are then ranked based on their similarity to the original program. We analyzed these similarity lists and found that plain document embeddings may lead to misclassification - it fails to capture nuanced code semantics. Nevertheless, in some cases it also provided useful information, thus helping to better understand the area of Automated Program Repair.

Knowledge Graph



Sign up or login to leave a comment