Multi-Temporal Convolutions for Human Action Recognition in Videos

Alexandros Stergiou, Ronald Poppe

Effective extraction of temporal patterns is crucial for the recognition of temporally varying actions in video. We argue that the fixed-sized spatio-temporal convolution kernels used in convolutional neural networks (CNNs) can be improved to extract informative motions that are executed at different time scales. To address this challenge, we present a novel spatio-temporal convolution block that is capable of extracting spatio-temporal patterns at multiple temporal resolutions. Our proposed multi-temporal convolution (MTConv) blocks utilize two branches that focus on brief and prolonged spatio-temporal patterns, respectively. The extracted time-varying features are aligned in a third branch, with respect to global motion patterns through recurrent cells. The proposed blocks are lightweight and can be integrated into any 3D-CNN architecture. This introduces a substantial reduction in computational costs. Extensive experiments on Kinetics, Moments in Time and HACS action recognition benchmark datasets demonstrate competitive performance of MTConvs compared to the state-of-the-art with a significantly lower computational footprint.

Knowledge Graph



Sign up or login to leave a comment