Physics-informed neural networks for the shallow-water equations on the sphere

Alex Bihlo, Roman O. Popovych

We propose the use of physics-informed neural networks for solving the shallow-water equations on the sphere. Physics-informed neural networks are trained to satisfy the differential equations along with the prescribed initial and boundary data, and thus can be seen as an alternative approach to solving differential equations compared to traditional numerical approaches such as finite difference, finite volume or spectral methods. We discuss the training difficulties of physics-informed neural networks for the shallow-water equations on the sphere and propose a simple multi-model approach to tackle test cases of comparatively long time intervals. We illustrate the abilities of the method by solving the most prominent test cases proposed by Williamson et al. [J. Comput. Phys. 102, 211-224, 1992].

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment