Showing Academic Performance Predictions during Term Planning: Effects on Students' Decisions, Behaviors, and Preferences

Gonzalo Gabriel Méndez, Luis Galárraga, Katherine Chiluiza

Course selection is a crucial activity for students as it directly impacts their workload and performance. It is also time-consuming, prone to subjectivity, and often carried out based on incomplete information. This task can, nevertheless, be assisted with computational tools, for instance, by predicting performance based on historical data. We investigate the effects of showing grade predictions to students through an interactive visualization tool. A qualitative study suggests that in the presence of predictions, students may focus too much on maximizing their performance, to the detriment of other factors such as the workload. A follow-up quantitative study explored whether these effects are mitigated by changing how predictions are conveyed. Our observations suggest the presence of a framing effect that induces students to put more effort into course selection when faced with more specific predictions. We discuss these and other findings and outline considerations for designing better data-driven course selection tools.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment