An abstract theory of domain decomposition methods with coarse spaces of the GenEO family

Nicole Spillane

Two-level domain decomposition methods are preconditioned Krylov solvers. What separates one and two-level domain decomposition method is the presence of a coarse space in the latter. The abstract Schwarz framework is a formalism that allows to define and study a large variety of two-level methods. The objective of this article is to define, in the abstract Schwarz framework, a family of coarse spaces called the GenEO coarse spaces (for Generalized Eigenvalues in the Overlaps). This is a generalization of existing methods for particular choices of domain decomposition methods. Bounds for the condition numbers of the preconditioned operators are proved that are independent of the parameters in the problem (e.g., any coefficients in an underlying PDE or the number of subdomains). The coarse spaces are computed by finding low or high frequency spaces of some well chosen generalized eigenvalue problems in each subdomain.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment