Scientific Dataset Discovery via Topic-level Recommendation

Basmah Altaf, Shichao Pei, Xiangliang Zhang

Data intensive research requires the support of appropriate datasets. However, it is often time-consuming to discover usable datasets matching a specific research topic. We formulate the dataset discovery problem on an attributed heterogeneous graph, which is composed of paper-paper citation, paper-dataset citation, and also paper content. We propose to characterize both paper and dataset nodes by their commonly shared latent topics, rather than learning user and item representations via canonical graph embedding models, because the usage of datasets and the themes of research projects can be understood on the common base of research topics. The relevant datasets to a given research project can then be inferred in the shared topic space. The experimental results show that our model can generate reasonable profiles for datasets, and recommend proper datasets for a query, which represents a research project linked with several papers.

Knowledge Graph



Sign up or login to leave a comment