Uformer: A General U-Shaped Transformer for Image Restoration

Zhendong Wang, Xiaodong Cun, Jianmin Bao, Jianzhuang Liu

In this paper, we present Uformer, an effective and efficient Transformer-based architecture, in which we build a hierarchical encoder-decoder network using the Transformer block for image restoration. Uformer has two core designs to make it suitable for this task. The first key element is a local-enhanced window Transformer block, where we use non-overlapping window-based self-attention to reduce the computational requirement and employ the depth-wise convolution in the feed-forward network to further improve its potential for capturing local context. The second key element is that we explore three skip-connection schemes to effectively deliver information from the encoder to the decoder. Powered by these two designs, Uformer enjoys a high capability for capturing useful dependencies for image restoration. Extensive experiments on several image restoration tasks demonstrate the superiority of Uformer, including image denoising, deraining, deblurring and demoireing. We expect that our work will encourage further research to explore Transformer-based architectures for low-level vision tasks. The code and models will be available at https://github.com/ZhendongWang6/Uformer.

Knowledge Graph



Sign up or login to leave a comment