Chasing Sparsity in Vision Transformers:An End-to-End Exploration

Tianlong Chen, Yu Cheng, Zhe Gan, Lu Yuan, Lei Zhang, Zhangyang Wang

Vision transformers (ViTs) have recently received explosive popularity, but their enormous model sizes and training costs remain daunting. Conventional post-training pruning often incurs higher training budgets. In contrast, this paper aims to trim down both the training memory overhead and the inference complexity, without scarifying the achievable accuracy. We launch and report the first-of-its-kind comprehensive exploration, on taking a unified approach of integrating sparsity in ViTs "from end to end". Specifically, instead of training full ViTs, we dynamically extract and train sparse subnetworks, while sticking to a fixed small parameter budget. Our approach jointly optimizes model parameters and explores connectivity throughout training, ending up with one sparse network as the final output. The approach is seamlessly extended from unstructured to structured sparsity, the latter by considering to guide the prune-and-grow of self-attention heads inside ViTs. For additional efficiency gains, we further co-explore data and architecture sparsity, by plugging in a novel learnable token selector to adaptively determine the currently most vital patches. Extensive results validate the effectiveness of our proposals on ImageNet with diverse ViT backbones. For instance, at 40% structured sparsity, our sparsified DeiT-Base can achieve 0.42% accuracy gain, at 33.13% and 24.70% running time} savings, compared to its dense counterpart. Perhaps most surprisingly, we find that the proposed sparse (co-)training can even improve the ViT accuracy rather than compromising it, making sparsity a tantalizing "free lunch". For example, our sparsified DeiT-Small at 5%, 50% sparsity for (data, architecture), improves 0.28% top-1 accuracy and meanwhile enjoys 49.32% FLOPs and 4.40% running time savings.

Knowledge Graph



Sign up or login to leave a comment