Counterfactual Maximum Likelihood Estimation for Training Deep Networks

Xinyi Wang, Wenhu Chen, Michael Saxon, William Yang Wang

Although deep learning models have driven state-of-the-art performance on a wide array of tasks, they are prone to learning spurious correlations that should not be learned as predictive clues. To mitigate this problem, we propose a causality-based training framework to reduce the spurious correlations caused by observable confounders. We give theoretical analysis on the underlying general Structural Causal Model (SCM) and propose to perform Maximum Likelihood Estimation (MLE) on the interventional distribution instead of the observational distribution, namely Counterfactual Maximum Likelihood Estimation (CMLE). As the interventional distribution, in general, is hidden from the observational data, we then derive two different upper bounds of the expected negative log-likelihood and propose two general algorithms, Implicit CMLE and Explicit CMLE, for causal predictions of deep learning models using observational data. We conduct experiments on two real-world tasks: Natural Language Inference (NLI) and Image Captioning. The results show that CMLE methods outperform the regular MLE method in terms of out-of-domain generalization performance and reducing spurious correlations, while maintaining comparable performance on the regular evaluations.

Knowledge Graph



Sign up or login to leave a comment