Mission Level Uncertainty in Multi-Agent Resource Allocation

Rohit Konda, Rahul Chandan, Jason R. Marden

In recent years, a significant research effort has been devoted to the design of distributed protocols for the control of multi-agent systems, as the scale and limited communication bandwidth characteristic of such systems render centralized control impossible. Given the strict operating conditions, it is unlikely that every agent in a multi-agent system will have local information that is consistent with the true system state. Yet, the majority of works in the literature assume that agents share perfect knowledge of their environment. This paper focuses on understanding the impact that inconsistencies in agents' local information can have on the performance of multi-agent systems. More specifically, we consider the design of multi-agent operations under a game theoretic lens where individual agents are assigned utilities that guide their local decision making. We provide a tractable procedure for designing utilities that optimize the efficiency of the resulting collective behavior (i.e., price of anarchy) for classes of set covering games where the extent of the information inconsistencies is known. In the setting where the extent of the informational inconsistencies is not known, we show -- perhaps surprisingly -- that underestimating the level of uncertainty leads to better price of anarchy than overestimating it.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment