Adversarial Semantic Hallucination for Domain Generalized Semantic Segmentation

Gabriel Tjio, Ping Liu, Joey Tianyi Zhou, Rick Siow Mong Goh

Convolutional neural networks may perform poorly when the test and train data are from different domains. While this problem can be mitigated by using the target domain data to align the source and target domain feature representations, the target domain data may be unavailable due to privacy concerns. Consequently, there is a need for methods that generalize well without access to target domain data during training. In this work, we propose an adversarial hallucination approach, which combines a class-wise hallucination module and a semantic segmentation module. Since the segmentation performance varies across different classes, we design a semantic-conditioned style hallucination layer to adaptively stylize each class. The classwise stylization parameters are generated from the semantic knowledge in the segmentation probability maps of the source domain image. Both modules compete adversarially, with the hallucination module generating increasingly 'difficult' style images to challenge the segmentation module. In response, the segmentation module improves its performance as it is trained with generated samples at an appropriate class-wise difficulty level. Experiments on state of the art domain adaptation work demonstrate the efficacy of our proposed method when no target domain data are available for training.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment