QKD based on symmetric entangled Bernstein-Vazirani

Michael Ampatzis, Theodore Andronikos

This paper introduces a novel entanglement-based QKD protocol, that makes use of a modified symmetric version of the Bernstein-Vazirani algorithm, in order to achieve a secure and efficient key distribution. Two variants of the protocol, one fully symmetric and one semi-symmetric, are presented. In both cases, the spatially separated Alice and Bob share multiple EPR pairs, one qubit of the pair each. The fully symmetric version allows both parties to input a secret key from the irrespective location and, finally, acquire in the end a totally new and original key, an idea which was inspired by the Diffie-Hellman key exchange protocol. In the semi-symmetric version, Alice sends her chosen secret key to Bob (or vice versa). Furthermore, their performance against an eavesdropper's attack is analyzed. Finally, in order to illustrate the operation of the protocols in practice, two small scale but detailed examples are given.

Knowledge Graph



Sign up or login to leave a comment