Lattice Paths for Persistent Diagrams with Application to COVID-19 Virus Spike Proteins

Moo K. Chung, Hernando Ombao

Topological data analysis, including persistent homology, has undergone significant development in recent years. However, one outstanding challenge is to build a coherent statistical inference procedure on persistent diagrams. The paired dependent data structure, as birth and death in persistent diagrams, adds additional complexity to the development. In this paper, we present a new lattice path representation for persistent diagrams. A new exact statistical inference procedure is developed for lattice paths via combinatorial enumerations. The proposed lattice path method is applied to the topological characterization of the protein structures of COVID-19 viruse. We demonstrate that there are topological changes during the conformation change of spike proteins that are needed to initiate the infection of host cells.

Knowledge Graph



Sign up or login to leave a comment