General Rough Modeling of Cluster Analysis

A. Mani

In this research, a general theoretical framework for clustering is proposed over specific partial algebraic systems by the present author. Her theory helps in isolating minimal assumptions necessary for different concepts of clustering information in any form to be realized in a situation (and therefore in a semantics). \emph{It is well-known that of the limited number of proofs in the theory of hard and soft clustering that are known to exist, most involve statistical assumptions}. Many methods seem to work because they seem to work in specific empirical practice. A new general rough method of analyzing clusterings is invented, and this opens the subject to clearer conceptions and contamination-free theoretical proofs. Numeric ideas of validation are also proposed to be replaced by those based on general rough approximation. The essence of the approach is explained in brief and supported by an example.

Knowledge Graph



Sign up or login to leave a comment