On Feature Collapse and Deep Kernel Learning for Single Forward Pass Uncertainty

Joost van Amersfoort, Lewis Smith, Andrew Jesson, Oscar Key, Yarin Gal

Gaussian processes are often considered a gold standard in uncertainty estimation with low dimensional data, but they have difficulty scaling to high dimensional inputs. Deep Kernel Learning (DKL) was introduced as a solution to this problem: a deep feature extractor is used to transform the inputs over which a Gaussian process' kernel is defined. However, DKL has been shown to provide unreliable uncertainty estimates in practice. We study why, and show that for certain feature extractors, "far-away" data points are mapped to the same features as those of training-set points. With this insight we propose to constrain DKL's feature extractor to approximately preserve distances through a bi-Lipschitz constraint, resulting in a feature space favorable to DKL. We obtain a model, DUE, which demonstrates uncertainty quality outperforming previous DKL and single forward pass uncertainty methods, while maintaining the speed and accuracy of softmax neural networks.

Knowledge Graph



Sign up or login to leave a comment