Convergence of EBT method for a non-local model of cell proliferation with discontinuous interaction kernel

Piotr Gwiazda, Błażej Miasojedow, Jakub Skrzeczkowski, Zuzanna Szymańska

We consider the EBT algorithm (a particle method) for the non-local equation with discontinuous interaction kernel. The main difficulty lies in the low regularity of the kernel which is not Lipschitz continuous, thus preventing the application of standard arguments. Therefore, we use the radial symmetry of the problem instead and transform it using spherical coordinates. The resulting equation has a Lipschitz kernel with only one singularity at zero. We introduce a new weighted flat norm and prove that the particle method converges in this norm. We also comment on the two-dimensional case which requires the application of the theory of measure spaces on general metric spaces and present numerical simulations confirming the theoretical results. In a companion paper, we apply the Bayesian method to fit parameters to this model and study its theoretical properties.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment