A doubly relaxed minimal-norm Gauss-Newton method for underdetermined nonlinear least-squares problems

Federica Pes, Giuseppe Rodriguez

When a physical system is modeled by a nonlinear function, the unknown parameters can be estimated by fitting experimental observations by a least-squares approach. Newton's method and its variants are often used to solve problems of this type. In this paper, we are concerned with the computation of the minimal-norm solution of an underdetermined nonlinear least-squares problem. We present a Gauss-Newton type method, which relies on two relaxation parameters to ensure convergence, and which incorporates a procedure to dynamically estimate the two parameters, as well as the rank of the Jacobian matrix, along the iterations. Numerical results are presented.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment