A general approach for Explanations in terms of Middle Level Features

Andrea Apicella, Francesco Isgrò, Roberto Prevete

Nowadays, it is growing interest to make Machine Learning (ML) systems more understandable and trusting to general users. Thus, generating explanations for ML system behaviours that are understandable to human beings is a central scientific and technological issue addressed by the rapidly growing research area of eXplainable Artificial Intelligence (XAI). Recently, it is becoming more and more evident that new directions to create better explanations should take into account what a good explanation is to a human user, and consequently, develop XAI solutions able to provide user-centred explanations. This paper suggests taking advantage of developing an XAI general approach that allows producing explanations for an ML system behaviour in terms of different and user-selected input features, i.e., explanations composed of input properties that the human user can select according to his background knowledge and goals. To this end, we propose an XAI general approach which is able: 1) to construct explanations in terms of input features that represent more salient and understandable input properties for a user, which we call here Middle-Level input Features (MLFs), 2) to be applied to different types of MLFs. We experimentally tested our approach on two different datasets and using three different types of MLFs. The results seem encouraging.

Knowledge Graph



Sign up or login to leave a comment