Fine-Grained System Identification of Nonlinear Neural Circuits

Dawna Bagherian, James Gornet, Jeremy Bernstein, Yu-Li Ni, Yisong Yue, Markus Meister

We study the problem of sparse nonlinear model recovery of high dimensional compositional functions. Our study is motivated by emerging opportunities in neuroscience to recover fine-grained models of biological neural circuits using collected measurement data. Guided by available domain knowledge in neuroscience, we explore conditions under which one can recover the underlying biological circuit that generated the training data. Our results suggest insights of both theoretical and practical interests. Most notably, we find that a sign constraint on the weights is a necessary condition for system recovery, which we establish both theoretically with an identifiability guarantee and empirically on simulated biological circuits. We conclude with a case study on retinal ganglion cell circuits using data collected from mouse retina, showcasing the practical potential of this approach.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment