Some modal and temporal translations of generalized basic logic

Wesley Fussner, William Zuluaga Botero

We introduce a family of modal expansions of {\L}ukasiewicz logic that are designed to accommodate modal translations of generalized basic logic (as formulated with exchange, weakening, and falsum). We further exhibit algebraic semantics for each logic in this family, in particular showing that all of them are algebraizable in the sense of Blok and Pigozzi. Using this algebraization result and an analysis of congruences in the pertinent varieties, we establish that each of the introduced modal {\L}ukasiewicz logics has a local deduction-detachment theorem. By applying Jipsen and Montagna's poset product construction, we give two translations of generalized basic logic with exchange, weakening, and falsum in the style of the celebrated G\"odel-McKinsey-Tarski translation. The first of these interprets generalized basic logic in a modal {\L}ukasiewicz logic in the spirit of the classical modal logic S4, whereas the second interprets generalized basic logic in a temporal variant of the latter.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment