Deception in Social Learning: A Multi-Agent Reinforcement Learning Perspective

Paul Chelarescu

Within the framework of Multi-Agent Reinforcement Learning, Social Learning is a new class of algorithms that enables agents to reshape the reward function of other agents with the goal of promoting cooperation and achieving higher global rewards in mixed-motive games. However, this new modification allows agents unprecedented access to each other's learning process, which can drastically increase the risk of manipulation when an agent does not realize it is being deceived into adopting policies which are not actually in its own best interest. This research review introduces the problem statement, defines key concepts, critically evaluates existing evidence and addresses open problems that should be addressed in future research.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment